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A new approach to problems of shock dynamics 
Part 2. Three-dimensional problems 

By G. B. WHITHAM 
Institute of Mathematical Sciences, New York University 

(Received 15 September 1958) 

This paper gives the extension of the approximate theory developed in Part 1 
(Whitham 1957) to three-dimensional problems. The basic equations are derived 
in $ 1, using the original assumption of a functional relation between the strength 
of the shock wave at any point and the area of the ray tube. An analogy with 
steady supersonic flow is found. For the diffraction of a plane shock wave by an 
obstacle, the equations and boundary conditions are exactly the same as those 
for steady supersonic potential flow past that obstacle, with a special choice of the 
density-speed relation. The successive positions of the shock wave are the 
equipotential surfaces of the supersonic flow. The ‘ shock-shocks ’ introduced in 
Part 1, i.e. discontinuities in the slope and Mach number of the shock wave, 
correspond to the steady oblique shock waves in the supersonic flow problem. 
They arise when Mach reflexion occurs. 

In  § 2 the theory is applied in detail to the diffraction of a plane shock wave by 
a cone. Then, in $3,  a small perturbation theory is applied to the two typical 
problems of (i) diffraction by a slender axi-symmetrical body of general shape, 
and (ii) the stability of a plane shock. Many further applications would be possible 
and some brief comments on these are made in $4. 

1. General theory 
The theory of shock dynamics developed in Part 1 (Whitham 1957) is extended 

in this paper to include general three-dimensional problems. The extension is only 
a matter of manipulating equations; the basic assumption remains the same. We 
introduce the rays, which are curves orthogonal to the successive positions of the 
shock wave, and consider a portion of the shock wave moving along a narrow tube 
of neighbouring rays. Then the assumption is that the Mach number 2M of the 
shock and the area A of the ray tube are functionally related. This is suggested by 
the similarity of the propagation in a ray tube to the propagation of a shock wave 
in a tube with soEid walls, and the function M ( A )  is taken from the results obtained 
by Chisnell (1957) for that problem. The assumption and its implications have 
been considered in detail in Part 1. It may be added that further investigations of 
Chisnell’s function M ( A )  have been made since Part 1 was written; these include 
an alternative derivation of the formula and further discussion of its validity (see 
Whitham 1958). 

Although the rays are not known in advance and have to be deduced as part of 
the solution, the relation A = A ( M )  is sufficient to determine the motion of the 
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shock wave without any further discussion of the dynamics of the flow. For two- 
dimensional problems, appropriate equations were formulated in the following 
way. The shock wave positions, a = constant, and the rays, p = constant, form 
a set of orthogonal co-ordinates (a, p) in the plane. The co-ordinate a is chosen to 
be aot, where t is the time at which the shock occupies that position and a, is the 
sound speed in the undisturbed gas ahead of the shock. Then the line elements in 
the directions of the co-ordinate curves are MSa and A&?. For purely geometrical 
reasons, M and A must satisfy the relation 

or, in more convenient form, the two relations 

where e(a, p) is the angle made by the ray with a fixed direction. The dynamics 
assumption, 

completes a determinate set of equations for M, A ,  0 as functions of a and p. 
From the solution of these equations the motion of the shock is easily determined: 
for example, by integration along rays, the position of the shock at time t = &/ao 
is given in terms of the parameter ,8 by 

A = A(M), (3) 

Pa 

where x, y are Cartesian co-ordinates, x0(p), yo(p) describe the initial shock 
position at t = 0 and 8 is measured from the x-axis. 

The choice of ind pendent variables based on the shock positions and the rays 
is particularly convenient for two-dimensional problems, and at first it was 
assumed that this would be true for three-dimensional problems. It seemed 
natural to introduce a third co-ordinate y so that a ray would be specified by p, y ;  
then, relations corresponding to (1) for the line elements together with (3) would 
determine the motion. In  fact, this procedure was rashly indicated in Part 1 as 
the one to be followed. It can be done, of course, but the amount of formal 
manipulation becomes prohibitive. The main snag is that a set of surfaces, such as 
the shock positions here, cannot in general be one family of a system of orthogonal 
co-ordinates (see, for example, Weatherburn 1931, p. 218); that is, p and y can 
not be orthogonal in general. Accordingly, such a co-ordinate system becomes 
a positive disadvantage in three dimensions, and we revert to the Cartesian 
co-ordinates (x, y, 2). Then the formulation becomes surprisingly simple. 

The motion of the shock can be described by 

ad = d x ,  Y, 2 )  ( 5 )  
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and the problem now is to determine the function a(x, y, z). The distance 6s along 
a ray between the shock positions a t  t and t + 6t is given by 

ao6t = &[Val, 

since the ray is normal to the shock. Hence, the Mach number M is given by 

Next, let i(x, y, z )  be the unit vector in the ray direction; since it is normal to the 
surfaces (5), it may be expressed as 

. V a  I = - -  
[Val - MVa. (7) 

Now, consider a small length of a narrow ray tube with end sections parts of 
surfaces a = constant, and let A be proportional to the cross-sectional area of 
the tube (measured by the area of the surface a = constant inside the tube at  that 
section). Applying the divergence theorem to the vector i/A and the volume V 
inside the ray tube, we have 

where v is the outward normal to the surface S of the ray tube. On the sides of the 
tube, i . Y  = 0; on the ends, i . v = k 1 respectively and JA-ldS = 1, so that the 
contributions from the ends cancel. Hence the right-hand side of (8) vanishes. 
Therefore, since the elementary ray tube can be taken arbitrarily, the usual 
argument of continuity shows that 

v. &) = 0 
, I  

everywhere. From (7), we have 

Since the basic assumption is that A is a known function of M ,  this is an equation 
to determine a. 

A typical problem is the diffraction of an initially plane shock by a solid obstacle. 
If the initial Mach number of the shock is No then we require 

X 
a N - at infinity, 

MO 

and, since the shock must be normal to the surface of the obstacle, the normal 
derivative of a must vanish on it, i.e. 

- 0 on the obstacle. (11) G -  

For this problem the solution of (9) is required subject to the boundary condi- 
tions (10) and (11). 

24-2 
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Analogy with steady supersonic flow 
There is an immediate analogy between this problem and that of determining the 
velocity potential in irrotational supersonic flow past a body. For, in steady 
compressible flow, the continuity of mass requires 

where q is the velocity vector and p is the density. If the flow is irrotational with 
velocity potential q5 then q = Vq5. Furthermore, from Bernoulli's equation, p is 
a function of the speed q;  for a polytropic gas with pressure-density relation 
p = K ~ Y ,  Bernoulli's equation is 

v. (pq)  = 0, (12) 

where p,, qa refer to values in the uniform stream at infinity. Therefore, we have 

where p is a known function of q = [V$l. This corresponds exactly to (9), the 
precise correspondence being 

The difference is that the dependence of p on /V$( is not the same as that of MIA 
on \Val. This difference accounts for the fact that (9) is always hyperbolic, 
corresponding to wave motions, whereas (14) may be hyperbolic or elliptic 
depending upon whether the flow is supersonic or subsonic. Turning to  the 
boundary conditions in the steady-flow problem, we require 

q5 - q,x at infinity 

v. (pV$)  = 0, (14) 

@-+a, q-+l/M, p-+M/A.  (15) 

and = 0 on the body. 
an 

These correspond precisely to (10) and ( 1  l ) ,  so the analogy is complete. 
In  view of this analogy, for any problem in supersonic flow there is a corre- 

sponding one of shock diffraction which can be solved by the same method. The 
difference in the dependence of the functions p and M I A  on [V$l and [Val, 
respectively, will mean in general that the details of the solutions will differ. 
However, in the special case of a small perturbation theory, the solution can be 
taken over directly from the corresponding linearized supersonic flow with a 
mere change in interpretation! T h w ,  any solution of a linearized supersonic 
flow problem so~?ves the corresponding shock diflraction problem at the same time. 
To show this we substitute 

in (9), and linearize the equation on the assumption that the perturbations a' are 

1 
a = -((z+a') (16 )  

Mo 

small. First, 
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Then, substituting (16) and (18) in (9), we have 

In supersonic flow, the velocity potential is taken in the form 

$ = q,& + $ 7 7  (20) 

and the linearized equation satisfied by $’ is found to be 

$b21+$&-B2$jcz= 0, B 2 =  A:-l, (21) 

where is the Mach number of the stream at infinity. At infinity, a‘ and 4‘ tend 
to zero, and on the obstacle the normal derivatives of x + a’ and x + 4’ must both 
vanish. Therefore, the problems to be solved for a’ and q5’ are exactly the 
same. The interpretations of the solution are different, and the coefficients B have 
different definitions in terms of the given parameters. The equipotentials of the 
supersonic flow problem are the shock positions of the diffraction problem; the 
streamlines are the rays. 

Solutions obtained by use of this analogy will be presented in Q 3. 

Two-dimensional problems 
The analogy with supersonic flow also provides a useful way of comparing the 
formulation (9) with (2) for two-dimensional problems. As noted above, (9) 
corresponds to the equation for $ in Cartesian co-ordinates (2, y). Now, (2) 
corresponds to the equations for speed q and flow direction 8 as functions of the 
velocity potential q5 and stream function $-. The latter equations are 

the correspondence with (2) is 

#+a, ++p, 8 + 0 ,  q+ l /M,  p+MIA,  (23) 

in agreement with (15). (Equations (22) can be derived from the geometry of 
equipotentials and streamlines in exactly the same way that equations (2) were 
obtained in Part 1 from the geometry of shocks and rays.) 

Equations (2) are more convenient than (9) for the problems of Part 1, just as, 
for many purposes, equations (22) are more convenient than (12) for two- 
dimensional flow. This is particularly true in finding the characteristic form of the 
equations. It was found in Part 1, that the characteristic form of equations (2) is 

on curves dp= + c ,  
da 
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where c(M), the propagation speed in the (a,P) co-ordinates, is given by 

(See equations (lo), (1 1 )  and (12) of Part 1 .) The variables M and 8 are given in 
terms of the derivatives of a by 

a: + a; = 1/M2, a,/a, = tan 8, (27) 

which allows the Riemann invariants 8 & JdM/Ac to be written in terms of a,, a,. 
To write the slopes of the characteristics in terms of x and y, we note that 

and xa = McosB, ya = Msin8, xp = -AsinB, yp = AcosB. (28) 

Therefore, the characteristics dplda = & c become 

A dM 
M d A  * 

dY Ac 
--tan(O&m) where t a n m = - =  d(----) ax M (29) 

The angle m corresponds to the Mach angle in supersonic flow. It is observed that 
the coefficient B which appears in the linearized equation (19) is cot m,, where m, 
is the angle of the characteristic in the undisturbed region ahead of the obstacle, 
where 8 = 0, M = No. Equations (24), (27) and (29) provide the characteristic 
form of (9) in two-dimensional problems. Clearly, even when using the (x,y) 
plane, it is often convenient to work with M and 8 as dependent variables. 

The simplest problem treated in Part 1 was the motion of an initially plane 
shock along a curved wall. It will be useful, perhaps, to indicate how the solution 
is obtained directly in the (x, y) plane. By the usual argument, the solution must 

~~ 

be a simple wave with 
0 = I M 2  

MO Ac 
holding throughout the flow (since all the negative characteristics start in the 
undisturbed region where M = M,, 8 = 0) .  This gives the Mach number il& at the 
wall in terms of the angle 0, of the wall without further calculation. In  the com- 
plete solution, 8 and M remain constant on each positive characteristic; as 
a consequence these characteristics are straight lines. The solution may be 
written in terms of a characteristic parameter 6 as 

8 = GM, M = J&$), (31) 

(32) Y = Y W ( 8  + (x - 8 tan ( 8 W c n  + %(m> 
where y = y,(x) describes the shape of the wall, 8,(x) = tan-lyL(x), lMw(x) is 
found from (30) and m,(x) is the corresponding value of m. If the wall turns away 
from the flow region, the solution is an ‘expansion wave’ with diverging charac- 
teristics as shown in figure 1 .  If the wall turns into the flow region a ‘compression 
wave’ results and the characteristics converge as shown in figure 2. The shock 
positions are lines of constant a. Since a$ = cos 8/M, a is given by 
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where x = x, is the initial position of the shock at t = 0; the curve a = a,t gives 
the position at time t. Shock positions are indicated by the broken lines in 
figures 1 and 2; it should be remembered that they correspond to  the equipoten- 
tials of supersonic flow. The characteristics in the (x, y) plane give the locus of the 
waves as they move along the shock. 

In the case of a compression wave, the characteristics form an envelope and the 
continuous solution given in ( 3  1) and (32 )  breaks down. This corresponds 
precisely to the 'breaking' of the waves propagating along the shock and the 
formation of a shock-shock as described in Part 1. The formation of a shock-shock 
indicates Mach reflexion as explained in Part 1. In  the (x, y)-plane the shock- 
shock will be represented as a curve across which M and 6' are discontinuous. 
This curve will be the locus of the shock-shock as it moves along the shock wave; 

FIGURE 1 .lfIGURE 2 

FIGURE 1. Motion of a shock wave along a convex wall; the full lines are characteristics 
and the broken lines are successive shock-wave positions. 

FIGURE 2. Motion of a shock wave along a concave wall. 

although there is a slight difference in sense, this locus will simply be called 
a, shock-shock. It corresponds to the steady oblique shock which appears in 
similar circumstances in steady supersonic flow. It is shown as a thicker line in 
figure 2. The relations connecting the values of M and 6' on the two sides of 
a shock-shock with its velocity have been established in Part 1. Here, they are 
required in the form of relations to be satisfied across the shock-shock curve in 
the (x, y) plane. In  addition, the general form of the relations for three-dimen- 
sional problems must be established. 

Xhock-shock relations 
First of all, since the portions of the shock wave must be connected, a must be 
continuous across the shock-shock. Hence, it follows that the tangential deriva- 
tives of a on the two sides of the shock-shock must be equal. If n is the unit vector 
normal to the surface of the shock-shock, this condition may be written 

n x (Va),  = n x (Va),, (34) 

where subscripts 0 and 1 denote values on the two sides of the shock-shock. The 
other condition concerns the jump in the normal derivative of a, and it may be 
found as follows. Consider a narrow ray tube which intersects a small portion of 
the shock-shock surface. If i,, i, are the directions of the ray on the two sides and 
A,, A ,  are corresponding cross-sectional areas of the ray tube, it is clear that the 
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area intercepted on the shock-shock has a projection A, in the i, direction and 
a projection A,  in the i, direction. Therefore, 

n.i, - n.i, 
A,  A ,  

In  terms of a, this condition may be written 

It may be remarked that (9) shows that the flux of MVaIA through a closed 
surface is zero in regions where MVaIA is continuous; equation (35) shows that 
the flux of M V a / A  is conserved even across discontinuities. This gives a quick 

I R  

M=Mo \ S 

FIU~RE 3. Shock-shock at a concave corner; 08 is the shock-shock 
and PQR represents a typical shock-wave position. 

way of guessing the appropriate shock condition from an equation of motion in 
divergence form, but it must always be verified independently that the quantity 
is indeed conserved across a discontinuity. For example, in continuous regions of 
a supersonic flow the entropy S is conserved, i.e. 

v - ( p q q  = 0, 

but it is not true that the normal flux of entropy on the two sides of a shock are 
the same. 

Equations (34) and (35) constitute the shock-shock relations for the three- 
dimensional problem. Remembering that V a  corresponds to q and MIA corre- 
sponds to p in steady supersonic flow, we see that (34) corresponds to the con- 
tinuity of tangential velocity across an oblique shock wave and (35) corresponds 
to the conservation of mass flux. In  supersonic flow a further relation is added 
(involving the normal component of momentum) since the entropy changes 
across the shock wave and so the function p(q) is modified. The extra relation is 
required to determine this modification. In  the shock dynamics, this would 
correspond to a change in the functional dependence of A on iM and it will be 
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ignored; but it is an important point and is discussed in detail in Part 1 ,  pp. 155-6. 
It corresponds to ignoring the entropy changes in supersonic flow and continuing 
to assume potential flow behind a shock wave. 

It may be verified that (34) and (35) reduce to the relations found in Part 1 for 
the two-dimensional case. In  that case, we may consider the oblique shock-shock 
separating the two uniform regions as shown in figure 3. The shock-shock is the 
line OX and a typical position of the shock wave is PQR. (This shows the Mach 
reflexion of the shock wave when it is diffracted by a wedge.) If the angle of 
the shock-shock to the x-axis is x, then remembering that Va = i /M, (34) and 
(35)  give 

( 36) 

(37) 

cos (x - 8,) COB (x - 0,) 
NO MI , 

A,  A1 

-__- 

sin (x - 8,) sin (x - 8,) - - 

These relations can be solved to give O1 and x in terms of M,, O0, M, as follows: 

(z - x)i (A; - A:)* 
tan (19, - 8,) = ___ 

tan(jy-8,) = - - __ 

A,M-+A,M, 
A ,  M ; - M i  4 
M, 0 A2,--A2, ' 

(39) 

These agree with the form found in Part 1; (39) corresponds to the relation 

for the shock-shock velocity C in the (a, p) co-ordinates. 

The A-M relation 
Before proceeding to applications of this basic theory to specific problems, it is 
convenient to repeat the main properties of the function A(M)  for purposes of 
reference. All the information has been given in Part 1 .  The function A(M)  may 
be written 

where 

The function K ( M )  decreases slowly from 0.5 at M = 1 to 0.3941 (for y = 1.4) 
as M --f 00. Thus, for weak shocks, 

and for strong shocks 
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The strong shock formula is particularly useful because it simplifies all the 
expressions, and also it covers the most important range of shock strengths. 
It becomes a good approximation for M > 3, say. It should also be noted that 
when this approximation applies, the expressions for ol/Mo, M/M,, B in any 
problem will be independent of Mo. Thus, a single calculation for a given geometry 
is sufficient for all M,. The shock wave will go through the same sequence of positions 
for all M,; only the time scale will be modijed. 

dM/Ac, which appears in the Riemann invariants A graph of the function LM 
(24), has been given in Part 1. We note the limiting values 

N 23{(M - 1))- (M,- I)$> ( M -  1 < l), (44) 

(45) 
M 

N &log- (M $ 1). 
MO 

The angle m between the characteristic direction and the ray direction can be 
determined from (29) and (40). It is found to be given by 

For weak shocks, 

(46) 

(47) 

for strong shocks, 

tanm + n-4 = 0.4439, m -+ 23.9", M -+ 03. (48) 

The coefficient B that appears in the linearized equation (19) is just cotm,; 
hence, B -+ n+ = 2.253 as M -+ 00. 

2. Diffraction by a cone 
The simplest three-dimensional problem is the diffraction of a plane shock wave 

by a cone; this corresponds to the well-known Taylor Maccoll problem of flow 
past a cone in supersonic flow. For axi-symmetrical problems such as this, it is 
still possible to use independent variables based on the shock positions and rays. 
The only modification of (2) would be the replacement of A by A/r ,  where x is the 
distance from the axis of symmetry, and the addition of the equation 

to determine r. But, it will be more convenient to work directly from (9) in the 
(x, r )  plane. 

In  terms of M and 19, 
cos 8 sin I9 

M '  M > = __ 

so that 

(49) 
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and, from (9), 

In  the problem of diffraction by a cone, the only parameters prescribed in the 
problem are the initial Mach number M, and the cone angle 0,; there is no length. 
Hence in the solution, M and 8 must be functions of the single variable 
y = tan-lr/x. Then, (50) and (51) become 

d0 
= tan(y-0)--, 

1 dM 
zq dy 

cot (7 - e) . 

(53) 

1 d A  tan 0 
sin7 cosy(l+tany tan@ 

The disturbed region is separated from the uniform region in which M = M,, 
0 = 0 by a shock-shock at which y is equal to the shock-shock angle x and the 
relations (38), (39) must be satisfied. So the solution of (52) and (53) is required 
such that 

and 

These are essentially two boundary conditions since x is not known in advance. 
The procedure for finding solutions for given M, is to choose a value for MI, then 
x and el can be found from (54) and the pair of equations (52)  and (53) integrated 
from y = x down to the point where it is found that 8 = 7. This point must be the 
surface of the cone and it gives the value of the cone angle 0, which corresponds to 
the chosen value of Ml. 

If the strength of the shock wave is fairly large (No > 3, say) the asymptotic 
form (43) may be used for the A-M relation and there is considerable simplification 
in the whole caIculation. Most important of all, only the Mach number ratio M/M, 
is significant, and one calculation gives the solution for a given cone for all M,. We 
set M/Mo = R ,  then AIA, = R- and 

8 = 8, a t  the cone y = 8,. (55) 

M d A  
A d M - n '  

--- - 

Hence, a single equation for O(7) can be obtained from (52) and (53). We have 

and 
1 dR 

(57) 
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The shock-shock relations become 

To solve the problem a value of Rl is chosen, the starting value of 8 at 7 = x is 
found from (58), and (56) is integrated to the point where 8 = 7. This common 
value is the cone angle 8,. The Mach number ratio R can then be found from an 
integration of (57). 

The position of the shock wave at  any time can be found from the solution for 
0(7), R ( y )  without any further integration. For a takes the form xf (?)/No, so 

cos 6 1 
a, = -{f(y)-sin27f'(7)] = ~ 

1 sin 8 
a, = -sin7 cosy f ' (7)  = __. R 

MO R '  

MO 

(59) 
cosO+sin8 tan7 

R Therefore, f ( 7 )  = 

Hence, a t  time t after the shock strikes the vertex of the cone, a = aot and 

X 1 
cos8+sinB t a n r '  

r X 
-= 
Uot tan 7, 

gives the position of the shock wave in terms of the parameter 7. It should be 
especially noted that x/Uot, r/Uot, the shock-shock angle x and the distributions 
of 8 and M/Mo with 7 are all independent of M,. Thus, for a given cone, all shock: 
waves go through exactly the same sequence of positions; the differences in Uo affect 
only the time scale. 

The calculation has been carried out* for Rl = Ml/Mo = 1.2, corresponding to 
8, = 22.4' and a shock-shock angle x = 35.8". The corresponding cone is found to 
be 0, = 28.8'. The change in R is very small; it rises only to 1.216 a t  the cone. The 
position of the shock is shown in figure 4, and the distributions of 8 and M/Mo 
with 7 are given in figures 5 and 6. It should be remarked that since 8 and R do 
not change very much, this solution is quite close to the corresponding two- 
dimensional one of diffraction by a wedge in which 8 and M/Mo remain constant. 
As Rl = M,/Mo increases further, 8, increases and the changes in 8 and M/Mo 
between the shock-shock and the cone get smaller. At the same time, the angle 
between the shock-shock and the cone decreases (from (58), x + 8, as R, -+ a). 
As explained in Part 1 for the wedge problem, there is no critical angle at which 
Mach reflexion goes over into regular reflexion when the simple dependence of 
A on M is used across shock-shocks. 

* The author is indebted to Mr J. Engelhardt for this calculation. 
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X P O t  

FIGURE 4. Calculated position of shock wave in diffraction by a cone. 
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FIUURE 5. Distribution of R = M / M ,  with g = tan-1 r lx  

for shock wave in figure 4. 
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FIUURE 6. 
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Distribution of 0 with g = tan-' r / x  for shock wave in 

11 
Distribution of 0 with g = tan-' r / x  for shock wave in figure 4. 
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As Rl decreases, the solution becomes less like the two-dimensional. When 
Bl - 1 is small, corresponding to a slender cone with small angle Ow, the changes in 
M/M,  and t9 across the shock-shock are of much smaller order in 6, than the 
changes between the shock-shock and the cone surface. An analytic expression 
for the solution can be found in this case; it is included in the next section where 
the general solution is found for a slender axi-symmetrical obstacle of arbitrary 
shape. The jumps in M/M, and 8 across the shock-shock are found to be 

el = a-oeg, 1 
whereas at the cone t9 = 8, and 

Finally, it should be remarked that the shock-shock represents Mach reflexion, 
but the reflected shock wave is suppressed in this work. However, the strength 
and angle of the reflected shock wave at the triple point can be calculated from 
the values of 8, and MI using the shock-wave relations. 

3. Small perturbation problems 

number H,, 
For perturbations to a plane shock wave moving in the 2-direction with Mach 

1 
a =  - @+a'), 

Mo 

where a'/x is small. The linearized equation to be satisfied by a' is the wave 
equation 

as found in (19). There are two main types of perturbation problem: (i) diffraction 
by thin or slender obstacles, and (ii) stability problems in which the initial shape 
and strength of the shock wave are given. An example of each is now considered. 

0 ~ ; ~  + OIL - B2ah. = 0 

(i) Diflraction by a slender body 
If the perturbations are produced by a thin or slender obstacle, the boundary 
conditions are a(x + d ) p n  = 0 on the obstacle, and a' = 0 at infinity. As explained 
already the solutions can be taken over from the theory of linearized supersonic 
flow. There is no point in copying down a long list of these. One example will be 
discussed here and the full range of possibilities can be seen by looking through 
a standard book on supersonic flow (for example, Ward (1 955) or Sears (1 955)). 

It is worth noting in some detail the important special case of diffraction by an 
axi-symmetrical slender body. If the cross-sectional area of the body at a distance 
2 from the nose is S(x) ,  the solution of (19), satisfying the boundary conditions, is 



A new approach to problems of shock dynamics. Part 2 383 

(This assumes that #(x )  is continuous.) In  deriving M and 8 from this solution it 
is important to notice that a; and a: are not of the same order near the body. If 
the maximum slope 6 of the surface of the body is taken as a measure of the 
slenderness, a: cc 6, while a: cc S210g l/S near the body. Therefore, in calculating 
M ,  the approximate expression 

should be used, instead of the simple linearized expression (17). This appears to 
be inconsistent since (17) was used in deriving (19), but the corresponding 
procedure has been fully investigated in supersonic flow and shown to give valid 
approximations. There is no trouble with 8; it is simply given by a;. Away from 
the body, both a: and a: are 0(a2)  and the a: term in (64) can be dropped. 

The linearized solution does not include an adequate description of the shock- 
shock. Due to the linearization, the shock-shock degenerates into the charac- 
teristic x -  Br = 0, but an inspection of (63) shows that a', a;, a; are continuous 
there. When ( x  - Br)/r is small, the expressions for a; and a: may be approximated 
as 

where 

Since F(x )  --f 0 as x --f 0,  M - M, and 8 vanish at x - Br = 0 and so there is no 
shock-shock. This result arises because the true values of M - M ,  and 8 at the 
shock-shock are of smaller order in 6 than the typical ones and they get neglected 
in the linearized theory. The linearized theory can be improved to include results 
for the shock-shock by the method used in supersonic flow (see Whitham 1952). 
The improved solution has 

in place of (65), where r(x,  r )  has to give a more accurate approximation to the 
true characteristic than the linear T = x-Br. On the characteristic curve 
T = constant, we have from (as), 

Substituting from (67) and using B = cotm,, we have 

where 
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Hence, the improved approximation for 7 is 

2 = Br - kF(7) r+ + 7. (69) 

The shock-shock can be determined from the characteristics (69) exactly as in the 
supersonic flow problem. At the shock-shock 7 and r are related by 

Together with (69), this gives the shock-shock curve; (67) gives the values MI and 
8, at the shock-shock. 

To supplement the results of the last section we may specialize the results of 
this small perturbation theory to the case of a slender cone. If the cone angle is 
Ow, then X(x) = n6$x2. The linearized solution (63) becomes 

hence, 

These quantities vanish at x /Br  = 1, and become 

at the cone where x /Br  - 1/BOw. Therefore, according to (64), the Mach number 
at the surface of the cone is given by 

In the improved theory near the shock-shock, F(7) = 28;d; hence, (70) gives 

9E28$ r 
4 '  

r=- 

and the shock-shock is the straight line 

z = ( B  - sk2ek) r .  
The shock-shock angle x is 

Mo dm 2 ( B ( d M ) j  *&' ~ = m , + s B ( B ~ + l )  1+-  - 

and the values of 8 and M at the shock-shock are 

M, dm 
8, = 3B(B2+1) 1 + -  - { B (dM),)e" 

M drn { B" (dM),) "* 

-- %-*'- 3(B2+1) I + -  - 
MO 

(74) 

(75) 

(76) 

If M, is large, m, - 23.9", B N 2.253 and No (dm/dM), N 0 (see (48)). The results 
for this case have been given in (61) and (62). 
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(ii) Stability of a plane shock wave 
In  the stability problem, the initial position and Mach number distribution of the 
shock wave are given, and the problem is to determine the subsequent motion. 
Here, it is assumed that the initial position is 

x = -f(y,z) 

and the initial strength is 

where f and g are small. Then, with 

M = No{l - g(y, z)},  

a = J l , ( X  + a‘), 
we have (using (17)) a‘ =f(y ,z) ,  a; = 9(Y, 4, 
initially. Strictly speaking, these are the values on x = - f ( y ,  z),  but it is con- 
sistent with the linearization already used to apply these initial conditions at  
x = 0. The solution of 

must be found subject to these initial values. 

obvious, and the solution is well known. It can be written as 
The analogy with the two-dimensional initial value problem of acoustics is 

where the integrations are over the interior of the circle 

B2(r--y)2+B2([-2)2 = 2 2 .  

In  general, the disturbance given by (77) decays as it spreads out on the shock 
wave; if the disturbance is initially confined to a finite region, the decay is 
ultimately like x-4 for large x. For the two-dimensional disturbance discussed in 
Part 1 there is no decay according to the linearized theory. But certain non-linear 
features, related to the formation of shock-shocks become crucially important 
after a sufficient time. When they were included in the two-dimensional problem 
a decay like x-4 was found (see Part 1).  Similar effects arise here and modify the 
ultimate decay law for an initially finite region from a’ a x-* to a’ a x-2 for 
large x. No details will be given, since a very full treatment for the closely similar 
problems of sound waves has been presented in a previous paper (Whitham 1956). 
The linearized expression (77) should give a good approximation in general 
until x becomes quite large. 

4. Further applications 
As explained above, many problems could be posed and solved for the small 

perturbation theory simply by re-interpreting the large number of solutions 
available in linearized supersonic flow and acoustics. Two of the simpler examples 
have been given in $3,  and others can be worked out as required. Generally 
speaking, however, these solutions for small disturbances will probably be of less 
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practical value here than in supersonic flow or acoustics, and the main emphasis 
should be on the solution of the full non-linear equations. For axi-symmetrical 
problems the numerical solution of quite complicated cases would be straight- 
forward. Rut even for the full three-dimensional problems, numerical methods 
become feasible in the approximate theory of this paper, since there are only 
three independent variables x ,  y, z. (This would seem to be out of the question in 
the exact formulation which involves all four variables x, y, z and t . )  Furthermore, 
there are special cases other than axi-symmetrical problems, where similarity 
solutions apply and the three variables can be reduced to two. For example, in 
the diffraction of a plane shock wave by a flat plate delta wing at incidence, the 
solution must take the form 

a = x f ( $  ;), 
since there is no fundamental length prescribed in the problem. This type of 
example corresponds to cone field theory in supersonic flow. 

For genuine three-variable problems, the theory developed in $ 1  leads to 
partial differential equations which are very similar to those in the exact formula- 
tion of two-dimensional time-dependent gas dynamics and numerical methods 
devised for such problems could be used here. 

This paper represents results obtained a t  the Institute of Mathematical 
Sciences, New York University, under the sponsorship of the Office of Naval 
Research, Contract N601-i-201, T.O. 1. 
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